Eulerian Numbers

Vivaan Daga

vivaandaga@gmail.com

Euler Circle, 2023

イロン イボン イヨン イヨン 三日

1/15

The set $\{1, 2, \ldots, n\}$ is denoted by [n].

The set $\{1, 2, \ldots, n\}$ is denoted by [n].

Definition (Permutation)

A permutation of [n] is a bijective function, σ , from $[n] \rightarrow [n]$. To avoid clutter it is useful to write a permutation in the so called *one line* notation, that is $\sigma = \sigma(1)\sigma(2)\ldots\sigma(n)$. So an example of a permutation of [3] is $\sigma = 213$, i.e. the permutation that maps $1 \rightarrow 2$, $2 \rightarrow 1$ and $3 \rightarrow 3$.

The set $\{1, 2, \ldots, n\}$ is denoted by [n].

Definition (Permutation)

A permutation of [n] is a bijective function, σ , from $[n] \rightarrow [n]$. To avoid clutter it is useful to write a permutation in the so called *one line* notation, that is $\sigma = \sigma(1)\sigma(2)\ldots\sigma(n)$. So an example of a permutation of [3] is $\sigma = 213$, i.e. the permutation that maps $1 \rightarrow 2$, $2 \rightarrow 1$ and $3 \rightarrow 3$.

The set of all permutations of [n] is denoted by S_n .

What are Eulerian numbers?

Definition (Descent)

Given a permutation, $\sigma \in S_n$ an index *i* is said to be a *descent*, if $\sigma(i) > \sigma(i+1)$.

What are Eulerian numbers?

Definition (Descent)

Given a permutation, $\sigma \in S_n$ an index *i* is said to be a *descent*, if $\sigma(i) > \sigma(i+1)$.

Definition

An *Eulerian number*, ${n \choose k}$, is the number of permutations, $\sigma \in S_n$ such that the number of descents σ has is equal to k.

What are Eulerian numbers?

Definition (Descent)

Given a permutation, $\sigma \in S_n$ an index *i* is said to be a *descent*, if $\sigma(i) > \sigma(i+1)$.

Definition

An *Eulerian number*, ${n \choose k}$, is the number of permutations, $\sigma \in S_n$ such that the number of descents σ has is equal to k.

Example

Let us compute $\langle {}^3_1 \rangle$, the permutations of [3] are:

```
123, 321, 213, 312, 231, 132
```

Of these the ones with 1 descent are 213, 312, 231, 132, therefore $\binom{3}{1} = 4$.

What are Eulerian Numbers?

$n \setminus k$	0	1	2	3	4	5	6	7	8	9	
0	1										
1	1										
2	1	1									
3	1	4	1								
4	1	11	11	1							
5	1	26	66	26	1						
6	1	57	302	302	57	1					
7	1	120	1191	2416	1191	120	1				
8	1	247	4293	15619	15619	4293	247	1			
9	1	502	14608	88234	156190	88234	14608	502	1		
10	1	1013	47840	455192	1310354	1310354	455192	47840	1013	1	

Table: $\langle {}^n_{k} \rangle$ values for $n \leq 10$

What are Eulerian Numbers?

Table: ${n \choose k}$ values for $n \le 10$											
n∖k	0	1	2	3	4	5	6	7	8	9	
0	1										
1	1										
2	1	1									
3	1	4	1								
4	1	11	11	1							
5	1	26	66	26	1						
6	1	57	302	302	57	1					
7	1	120	1191	2416	1191	120	1				
8	1	247	4293	15619	15619	4293	247	1			
9	1	502	14608	88234	156190	88234	14608	502	1		
10	1	1013	47840	455192	1310354	1310354	455192	47840	1013	1	

Several interesting mathematical facts about Eulerian numbers are hiding inside of this table.

Looking at the table one can make the following simple deductions:

Looking at the table one can make the following simple deductions:

• The sequence of numbers in each row is unimodal.

Looking at the table one can make the following simple deductions:

- The sequence of numbers in each row is unimodal.
- The sequence of numbers in each row is palindromic.

Looking at the table one can make the following simple deductions:

- The sequence of numbers in each row is unimodal.
- The sequence of numbers in each row is palindromic.
- The sum of the numbers in the *n*th row is *n*!.

One has the following recurrence relation for the Eulerian Numbers:

One has the following recurrence relation for the Eulerian Numbers:

Theorem

For any n > 0 and all k, ${n \choose k} = (n-k) {n-1 \choose k-1} + (k+1) {n-1 \choose k}$.

One has the following recurrence relation for the Eulerian Numbers:

Theorem

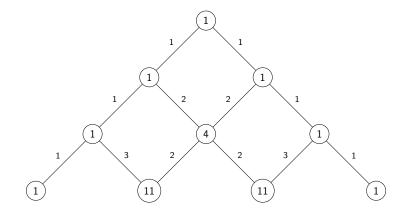
For any
$$n>0$$
 and all k, ${n \choose k}=(n-k){n-1 \choose k-1}+(k+1){n-1 \choose k}$

Proof.

Given a permutation in S_n with k descents, we can delete the number n from the one line notation to obtain a permutation in S_{n-1} with k or k-1 descents. Conversely, given a permutation in S_{n-1} with k descents we can add n in k+1 positions to maintain k descents and given a permutation in S_{n-1} with k-1 descents we can add n to n-k positions to get k descents, this gives us the desired result.

The recurrence relation gives us the following illuminating "weighted" pascal-like triangle for the Eulerian numbers:

The recurrence relation gives us the following illuminating "weighted" pascal-like triangle for the Eulerian numbers:



One the most beautiful/interesting things about the Eulerian numbers is a result known as *Worpitzky's identity*.

One the most beautiful/interesting things about the Eulerian numbers is a result known as *Worpitzky's identity*.

Theorem (Worpitzky's identity)

For any n > 0, we have: $(k+1)^n = \sum_{i=0}^{n-1} {n \choose i} {k+n-i \choose n}$.

One the most beautiful/interesting things about the Eulerian numbers is a result known as *Worpitzky's identity*.

Theorem (Worpitzky's identity)

For any n > 0, we have: $(k + 1)^n = \sum_{i=0}^{n-1} {n \choose i} {k+n-i \choose n}$.

To prove Worpitzky's identity bijectively we need the following definition:

One the most beautiful/interesting things about the Eulerian numbers is a result known as *Worpitzky's identity*.

Theorem (Worpitzky's identity)

For any n > 0, we have: $(k + 1)^n = \sum_{i=0}^{n-1} {n \choose i} {k+n-i \choose n}$.

To prove Worpitzky's identity bijectively we need the following definition:

Definition

A *barred* permutation is a permutation of [n] with precisely k inserted bars, with the restriction that at least one bar must be inserted between a descent. We shall let B(n, k) denote the number of barred permutations of [n] with k bars. For example $B(3, 2) = \text{Card}(\{||123, |3|12, 3|2|1, ...\})$. One the most beautiful/interesting things about the Eulerian numbers is a result known as *Worpitzky's identity*.

Theorem (Worpitzky's identity)

For any n > 0, we have: $(k+1)^n = \sum_{i=0}^{n-1} {n \choose i} {k+n-i \choose n}$.

To prove Worpitzky's identity bijectively we need the following definition:

Definition

A *barred* permutation is a permutation of [n] with precisely k inserted bars, with the restriction that at least one bar must be inserted between a descent. We shall let B(n, k) denote the number of barred permutations of [n] with k bars. For example $B(3, 2) = \text{Card}(\{||123, |3|12, 3|2|1, ...\})$.

Finally we are ready to give the proof of Worpitzky's identity:

Proof.

Let us count B(n, k). We can obtain a barred permutation of [n] with k bars from a normal permutation with i descents by placing a bar between each descent and then placing the remaining k - i bars, the total number of ways to do this is $\binom{n}{i}\binom{k+n-i}{n}$ therefore $B(n, k) = \sum_{i=0}^{n-1} \binom{n}{i}\binom{k+n-i}{n}$, but we can also count B(n, k) in a different way, since the numbers between any two bars are increasing we have that B(n, k) is equal to the number of partitions of the set [n] into at most k + 1 ordered parts, this value is $(k+1)^n$, equating the two obtained values we get the desired result.

$$\binom{n}{0} = 1$$

$$\left< \begin{array}{c} n \\ 0 \end{array} \right> = 1$$

$$\binom{n}{1} = 2^n - (n+1)$$

$$\left< \begin{array}{c} n \\ 0 \end{array} \right> = 1$$

$$\binom{n}{1} = 2^n - (n+1)$$

$$\binom{n}{2} = 3^n - 2^n(n+1) + \binom{n+1}{n-1}$$

$$\left< \begin{array}{c} n \\ 0 \end{array} \right> = 1$$

$$\binom{n}{1} = 2^n - (n+1)$$

$$\left\langle {n \atop 2} \right\rangle = 3^n - 2^n(n+1) + \binom{n+1}{n-1}$$

This leads us to the following theorem:

$$\left< \begin{array}{c} n \\ 0 \end{array} \right> = 1$$

$$\binom{n}{1} = 2^n - (n+1)$$

$$\left\langle {n \atop 2} \right\rangle = 3^n - 2^n(n+1) + \binom{n+1}{n-1}$$

This leads us to the following theorem:

Theorem (Alternating sum formula)

For any
$$n\geq 1$$
 and all k, ${n\choose k}=\sum_{i=0}^k(-1)^i(k+1-i)^n{n+1\choose i}$

Definition

An Eulerian Polynomial is a polynomial, $A_n(t) = \sum_{k=0}^{n-1} {n \choose k} t^k$. For convenience we define $A_0(t) = 1$ (unfortunately this conflicts with the usual empty sum convention).

Definition

An *Eulerian Polynomial* is a polynomial, $A_n(t) = \sum_{k=0}^{n-1} {n \choose k} t^k$. For convenience we define $A_0(t) = 1$ (unfortunately this conflicts with the usual empty sum convention).

One has the following recurrence for the Eulerian polynomials:

Definition

An *Eulerian Polynomial* is a polynomial, $A_n(t) = \sum_{k=0}^{n-1} {n \choose k} t^k$. For convenience we define $A_0(t) = 1$ (unfortunately this conflicts with the usual empty sum convention).

One has the following recurrence for the Eulerian polynomials:

Theorem

$$A_{n+1}(t) = (1+nt)A_n(t) + t(1-t)A'_n(t)$$

Eulerian Polynomials

(We shall disregard any convergence issue that may arise from now on.)

Eulerian Polynomials

(We shall disregard any convergence issue that may arise from now on.) Notice that

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$

Eulerian Polynomials

(We shall disregard any convergence issue that may arise from now on.) Notice that

.

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$

Differentiating both sides we get:

$$\sum_{k=0}^{\infty} k^2 x^k = \frac{x(1+1x)}{(1-x)^3}$$

(We shall disregard any convergence issue that may arise from now on.) Notice that

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$

Differentiating both sides we get:

$$\sum_{k=0}^{\infty} k^2 x^k = \frac{x(1+1x)}{(1-x)^3}$$

Continuing this process of differentiating we get:

(We shall disregard any convergence issue that may arise from now on.) Notice that

$$\sum_{k=0}^{\infty} k x^k = \frac{x}{(1-x)^2}$$

Differentiating both sides we get:

$$\sum_{k=0}^{\infty} k^2 x^k = \frac{x(1+1x)}{(1-x)^3}$$

Continuing this process of differentiating we get:

$$\sum_{k=0}^{\infty} k^3 x^k = \frac{x(1+4x+1x^2)}{(1-x)^4}$$
$$\sum_{k=0}^{\infty} k^4 x^k = \frac{x(1+11x+11x^2+1x^3)}{(1-x)^5}$$

The previous slide suggests that we have the following theorem:

The previous slide suggests that we have the following theorem:

Theorem

$$\sum_{k=0}^{\infty} k^n x^k = \frac{x \cdot S_n(t)}{(1-x)^{n+1}}$$

The previous slide suggests that we have the following theorem:

Theorem

$$\sum_{k=0}^{\infty} k^n x^k = \frac{x \cdot S_n(t)}{(1-x)^{n+1}}$$

This is known as the *Carlitz identity* and can be shown using induction and the recurrence for Eulerian polynomials.

A cool application of the Carlitz identity

To finish let us present a cool application of the Carlitz identity. Recall from Simon's lecture on divergent series that we have:

A cool application of the Carlitz identity

To finish let us present a cool application of the Carlitz identity. Recall from Simon's lecture on divergent series that we have:

$$\zeta(-k)=(-1)^k\frac{B_{k+1}}{k+1}$$

and

$$\zeta_a(-k) = (1 - 2^{k+1})\zeta(-k)$$

Where the B_k are the Bernoulli numbers and k is a non-negative integer.

A cool application of the Carlitz identity

To finish let us present a cool application of the Carlitz identity. Recall from Simon's lecture on divergent series that we have:

$$\zeta(-k)=(-1)^k\frac{B_{k+1}}{k+1}$$

and

$$\zeta_a(-k) = (1 - 2^{k+1})\zeta(-k)$$

Where the B_k are the Bernoulli numbers and k is a non-negative integer. We can also evaluate $\zeta_a(-k)$, using the Carlitz identity. Letting x = -1 in the Carlitz identity, we get that $\zeta_a(-k) = \frac{-A(-1)}{2^{k+1}}$, solving for A(-1) we get that $A(-1) = 2^{n+1}(2^{n+1}-1)\frac{B_{n+1}}{n+1}$, in other words $\sum_{m=0}^{n}(-1)^m \langle {n \atop m} \rangle = (2^{n+1}-1)\frac{B_{n+1}}{n+1}$, which gives us a relation between the Eulerian numbers and the Bernoulli numbers.

Thank You! Questions?