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Recall...

The set {1, 2, . . . , n} is denoted by [n].

Definition (Permutation)

A permutation of [n] is a bijective function, σ, from [n] → [n]. To avoid
clutter it is useful to write a permutation in the so called one line notation,
that is σ = σ(1)σ(2) . . . σ(n). So an example of a permutation of [3] is
σ = 213, i.e. the permutation that maps 1 → 2, 2 → 1 and 3 → 3.

The set of all permutations of [n] is denoted by Sn.
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What are Eulerian numbers?

Definition (Descent)

Given a permutation, σ ∈ Sn an index i is said to be a descent, if
σ(i) > σ(i + 1).

Definition

An Eulerian number ,
〈 n
k

〉
, is the number of permutations, σ ∈ Sn such

that the number of descents σ has is equal to k.

Example

Let us compute
〈3
1

〉
, the permutations of [3] are:

123, 321, 213, 312, 231, 132

Of these the ones with 1 descent are 213, 312, 231, 132, therefore
〈3
1

〉
= 4.
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What are Eulerian Numbers?

Table:
〈
n
k

〉
values for n ≤ 10

n\k 0 1 2 3 4 5 6 7 8 9
0 1
1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1
8 1 247 4293 15619 15619 4293 247 1
9 1 502 14608 88234 156190 88234 14608 502 1
10 1 1013 47840 455192 1310354 1310354 455192 47840 1013 1

Several interesting mathematical facts about Eulerian numbers are hiding
inside of this table.
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Properties of Eulerian Numbers

Looking at the table one can make the following simple deductions:

The sequence of numbers in each row is unimodal.

The sequence of numbers in each row is palindromic.

The sum of the numbers in the nth row is n!.
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Properties of Eulerian Numbers

One has the following recurrence relation for the Eulerian Numbers:

Theorem

For any n > 0 and all k ,
〈n
k

〉
= (n − k)

〈n−1
k−1

〉
+ (k + 1)

〈n−1
k

〉
.

Proof.

Given a permutation in Sn with k descents, we can delete the number n
from the one line notation to obtain a permutation in Sn−1 with k or
k − 1 descents. Conversely, given a permutation in Sn−1 with k descents
we can add n in k + 1 positions to maintain k descents and given a
permutation in Sn−1 with k − 1 descents we can add n to n − k positions
to get k descents, this gives us the desired result.
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Properties of Eulerian Numbers

The recurrence relation gives us the following illuminating “weighted”
pascal-like triangle for the Eulerian numbers:

1

1 1

1 4 1

1 11 11 1

1 1

1 2 2 1

1 3 2 2 3 1

7 / 15



Properties of Eulerian Numbers

The recurrence relation gives us the following illuminating “weighted”
pascal-like triangle for the Eulerian numbers:

1

1 1

1 4 1

1 11 11 1

1 1

1 2 2 1

1 3 2 2 3 1

7 / 15



Properties of Eulerian Numbers

One the most beautiful/interesting things about the Eulerian numbers is a
result known as Worpitzky’s identity.

Theorem (Worpitzky’s identity)

For any n > 0, we have: (k + 1)n =
∑n−1

i=0

〈n
i

〉(k+n−i
n

)
.

To prove Worpitzky’s identity bijectively we need the following definition:

Definition

A barred permutation is a permutation of [n] with precisely k inserted
bars, with the restriction that at least one bar must be inserted between a
descent. We shall let B(n, k) denote the number of barred permutations
of [n] with k bars. For example B(3, 2) = Card({||123, |3|12, 3|2|1, ...}).

Finally we are ready to give the proof of Worpitzky’s identity:
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Proof.

Let us count B(n, k). We can obtain a barred permutation of [n] with k
bars from a normal permutation with i descents by placing a bar between
each descent and then placing the remaining k − i bars, the total number
of ways to do this is

〈n
i

〉(k+n−i
n

)
therefore B(n, k) =

∑n−1
i=0

〈n
i

〉(k+n−i
n

)
, but

we can also count B(n, k) in a different way, since the numbers between
any two bars are increasing we have that B(n, k) is equal to the number of
partitions of the set [n] into at most k + 1 ordered parts, this value is
(k + 1)n, equating the two obtained values we get the desired result.
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Properties of Eulerian Numbers

By applying Worpitzky’s identity (repeatedly) one gets the following:

〈
n

0

〉
= 1

〈
n

1

〉
= 2n − (n + 1)

〈
n

2

〉
= 3n − 2n(n + 1) +

(
n + 1

n − 1

)
This leads us to the following theorem:

Theorem (Alternating sum formula)

For any n ≥ 1 and all k ,
〈n
k

〉
=

∑k
i=0(−1)i (k + 1− i)n

(n+1
i

)
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Eulerian Polynomials

Definition

An Eulerian Polynomial is a polynomial, An(t) =
∑n−1

k=0

〈n
k

〉
tk . For

convenience we define A0(t) = 1(unfortunately this conflicts with the
usual empty sum convention).

One has the following recurrence for the Eulerian polynomials:

Theorem

An+1(t) = (1 + nt)An(t) + t(1− t)A′
n(t)

11 / 15
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Eulerian Polynomials

(We shall disregard any convergence issue that may arise from now on.)

Notice that
∞∑
k=0

kxk =
x

(1− x)2

Differentiating both sides we get:
∞∑
k=0

k2xk =
x(1 + 1x)

(1− x)3

Continuing this process of differentiating we get:
∞∑
k=0

k3xk =
x(1 + 4x + 1x2)

(1− x)4

∞∑
k=0

k4xk =
x(1 + 11x + 11x2 + 1x3)

(1− x)5
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The previous slide suggests that we have the following theorem:

Theorem
∞∑
k=0

knxk =
x · Sn(t)

(1− x)n+1

This is known as the Carlitz identity and can be shown using induction
and the recurrence for Eulerian polynomials.
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A cool application of the Carlitz identity

To finish let us present a cool application of the Carlitz identity. Recall
from Simon’s lecture on divergent series that we have:

ζ(−k) = (−1)k
Bk+1

k + 1

and

ζa(−k) = (1− 2k+1)ζ(−k)

Where the Bk are the Bernoulli numbers and k is a non-negative integer.
We can also evaluate ζa(−k), using the Carlitz identity. Letting x = −1 in

the Carlitz identity, we get that ζa(−k) = −A(−1)
2k+1 , solving for A(−1) we

get that A(−1) = 2n+1(2n+1 − 1)Bn+1

n+1 , in other words∑n
m=0(−1)m

〈n
m

〉
= (2n+1 − 1)Bn+1

n+1 , which gives us a relation between the
Eulerian numbers and the Bernoulli numbers.
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Thank You! Questions?
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