## Artin's Primitive Root Conjecture

Vivaan Daga

vivaandaga@gmail.com

Euler Circle

# Table of Contents

Primitive Roots mod p

2 Artin's Conjecture





# Table of Contents

Primitive Roots mod p

2 Artin's Conjecture

3 The function  $\delta(a)$ 

4 Hooley's Conditional Proof

<ロト < 回 > < 目 > < 目 > < 目 > 目 の Q (C 3/15

The notion of a primitive root mod p was introduced by Gauss when he was investigating the period of the decimal expansion of  $\frac{1}{p}$  for prime  $p \neq 2, 5$ .

The notion of a primitive root mod p was introduced by Gauss when he was investigating the period of the decimal expansion of  $\frac{1}{p}$  for prime  $p \neq 2, 5$ .

Gauss proved the following lemma:

The notion of a primitive root mod p was introduced by Gauss when he was investigating the period of the decimal expansion of  $\frac{1}{p}$  for prime  $p \neq 2, 5$ .

Gauss proved the following lemma:

#### Lemma

The period of the decimal expansion of  $\frac{1}{p}$  for prime  $p \neq 2,5$  is the least positive number k such that  $10^k = 1 \mod p$ .

The notion of a primitive root mod p was introduced by Gauss when he was investigating the period of the decimal expansion of  $\frac{1}{p}$  for prime  $p \neq 2, 5$ .

Gauss proved the following lemma:

#### Lemma

The period of the decimal expansion of  $\frac{1}{p}$  for prime  $p \neq 2,5$  is the least positive number k such that  $10^k = 1 \mod p$ .

So if we have a prime p, for which the decimal expansion of  $\frac{1}{p}$  has period p-1, the maximum possible, then p-1 must the least positive k for which  $10^k = 1 \mod p$  holds. In such a case, we say 10 is a primitive root mod p.

### Definition

Given a prime p, an integer a is said to be a primitive root mod p if p-1 is the least positive integer k such that  $a^k = 1 \mod p$ .

### Definition

Given a prime p, an integer a is said to be a primitive root mod p if p-1 is the least positive integer k such that  $a^k = 1 \mod p$ .

Or in more modern terms:

### Definition

Given a prime p, an integer a is said to be a primitive root mod p if p-1 is the least positive integer k such that  $a^k = 1 \mod p$ .

Or in more modern terms:

#### Definition

An integer *a* is a primitive root mod *p* if the subgroup generated by *a* in the cyclic group  $(\mathbb{Z}/p\mathbb{Z})^{\times}$  is the whole group.

# Table of Contents

Primitive Roots mod p

### 2 Artin's Conjecture

3 The function  $\delta(a)$ 



We can now state qualitative and quantitative forms of Artin's Primitive Root Conjecture:

We can now state qualitative and quantitative forms of Artin's Primitive Root Conjecture:

#### Qualitative Form

Given a non-zero integer *a* other than -1 or a perfect square, there exist infinitely many primes *p* for which *a* is a primitive root mod *p*.

We can now state qualitative and quantitative forms of Artin's Primitive Root Conjecture:

#### Qualitative Form

Given a non-zero integer *a* other than -1 or a perfect square, there exist infinitely many primes *p* for which *a* is a primitive root mod *p*.

#### Quantitative Form

Given a non-zero integer *a* other than -1 or a perfect square, if  $\mathcal{P}_a(x)$  denotes the number of primes less than equal to *x* for which *a* is a primitive root, then we have that  $\mathcal{P}_a(x) \sim \delta(a) \frac{x}{\log x}$ , where  $\delta(a)$  is a specific positive function of *a*.

We can now state qualitative and quantitative forms of Artin's Primitive Root Conjecture:

### Qualitative Form

Given a non-zero integer *a* other than -1 or a perfect square, there exist infinitely many primes *p* for which *a* is a primitive root mod *p*.

#### Quantitative Form

Given a non-zero integer *a* other than -1 or a perfect square, if  $\mathcal{P}_a(x)$  denotes the number of primes less than equal to *x* for which *a* is a primitive root, then we have that  $\mathcal{P}_a(x) \sim \delta(a) \frac{x}{\log x}$ , where  $\delta(a)$  is a specific positive function of *a*.

In the qualitative form,  $\delta(a)$  is the density or proportion of primes for which *a* is a primitive root since by the Prime Number Theorem  $\pi(x) \sim \frac{x}{\log x}$ . Of course, the quantitative form implies the qualitative form.

# Table of Contents

Primitive Roots mod *p* 

2 Artin's Conjecture





### Remark

From this slide onward, we shall be using notions and theorems from algebraic number theory. If you do not know algebraic number theory, take these as black-boxes.

### Remark

From this slide onward, we shall be using notions and theorems from algebraic number theory. If you do not know algebraic number theory, take these as black-boxes.

Let *a* be a non-zero integer that is not -1 or a perfect square. Let us now try to get a conjectural value for  $\delta(a)$ . To do this, we shall require notions from algebraic number theory. The connection to algebraic number theory is seen from the following theorem:

### Remark

From this slide onward, we shall be using notions and theorems from algebraic number theory. If you do not know algebraic number theory, take these as black-boxes.

Let *a* be a non-zero integer that is not -1 or a perfect square. Let us now try to get a conjectural value for  $\delta(a)$ . To do this, we shall require notions from algebraic number theory. The connection to algebraic number theory is seen from the following theorem:

#### Theorem

Given a prime p, a is a primitive root mod p if and only if p does not split completely in any  $K_q$ , where q is prime and  $K_q = \mathbb{Q}(\zeta_q, a^{1/q})$ .

### Remark

From this slide onward, we shall be using notions and theorems from algebraic number theory. If you do not know algebraic number theory, take these as black-boxes.

Let *a* be a non-zero integer that is not -1 or a perfect square. Let us now try to get a conjectural value for  $\delta(a)$ . To do this, we shall require notions from algebraic number theory. The connection to algebraic number theory is seen from the following theorem:

#### Theorem

Given a prime p, a is a primitive root mod p if and only if p does not split completely in any  $K_q$ , where q is prime and  $K_q = \mathbb{Q}(\zeta_q, a^{1/q})$ .

Now, Chebotarev's Density Theorem implies that the density of primes which split in  $K_k$  is  $\frac{1}{n(k)}$ , where n(k) is the degree of the extension  $K_k/\mathbb{Q}$ .

Using Chebotarev's Density Theorem and the fact that a prime p splits completely in  $K_k$  and  $K_l$  if and only if it splits completely in  $K_{\text{lcm}(k,l)}$ , we can find a heuristic for  $\delta(a)$  using the inclusion-exclusion principle:

Using Chebotarev's Density Theorem and the fact that a prime p splits completely in  $K_k$  and  $K_l$  if and only if it splits completely in  $K_{\text{lcm}(k,l)}$ , we can find a heuristic for  $\delta(a)$  using the inclusion-exclusion principle:

 $\delta(a)$  gives us the density of primes which split in none of the  $K_q$ , for prime q. To "compute" this density subtract the density for each prime:

$$1 - \frac{1}{n(2)} - \frac{1}{n(3)} - \frac{1}{n(3)} - \cdots$$

Using Chebotarev's Density Theorem and the fact that a prime p splits completely in  $K_k$  and  $K_l$  if and only if it splits completely in  $K_{\text{lcm}(k,l)}$ , we can find a heuristic for  $\delta(a)$  using the inclusion-exclusion principle:

 $\delta(a)$  gives us the density of primes which split in none of the  $K_q$ , for prime q. To "compute" this density subtract the density for each prime:

$$1 - \frac{1}{n(2)} - \frac{1}{n(3)} - \frac{1}{n(3)} - \cdots$$

Then add the densities for product of two primes:

$$+\frac{1}{n(6)}+\frac{1}{n(10)}+\frac{1}{n(14)}+\cdots$$

Using Chebotarev's Density Theorem and the fact that a prime p splits completely in  $K_k$  and  $K_l$  if and only if it splits completely in  $K_{\text{lcm}(k,l)}$ , we can find a heuristic for  $\delta(a)$  using the inclusion-exclusion principle:

 $\delta(a)$  gives us the density of primes which split in none of the  $K_q$ , for prime q. To "compute" this density subtract the density for each prime:

$$1 - \frac{1}{n(2)} - \frac{1}{n(3)} - \frac{1}{n(3)} - \cdots$$

Then add the densities for product of two primes:

$$+\frac{1}{n(6)}+\frac{1}{n(10)}+\frac{1}{n(14)}+\cdots$$

And so on.

Using Chebotarev's Density Theorem and the fact that a prime p splits completely in  $K_k$  and  $K_l$  if and only if it splits completely in  $K_{\text{lcm}(k,l)}$ , we can find a heuristic for  $\delta(a)$  using the inclusion-exclusion principle:

 $\delta(a)$  gives us the density of primes which split in none of the  $K_q$ , for prime q. To "compute" this density subtract the density for each prime:

$$1 - \frac{1}{n(2)} - \frac{1}{n(3)} - \frac{1}{n(3)} - \cdots$$

Then add the densities for product of two primes:

$$+\frac{1}{n(6)}+\frac{1}{n(10)}+\frac{1}{n(14)}+\cdots$$

And so on. In this way, we get that  $\delta(a) = \sum_{k=1}^{\infty} \frac{\mu(k)}{n(k)}$ , where  $\mu$  is the Möbius function.

In the previous slide, we gave a heuristic for  $\delta(a) = \sum_{k=1}^{\infty} \frac{\mu(k)}{n(k)}$ . Letting  $a_1$  be the square free part of a and h be the largest integer such that a is an h-th power, it turns out we have the following theorem:

In the previous slide, we gave a heuristic for  $\delta(a) = \sum_{k=1}^{\infty} \frac{\mu(k)}{n(k)}$ . Letting  $a_1$  be the square free part of a and h be the largest integer such that a is an h-th power, it turns out we have the following theorem:

#### Theorem

$$Let A(h) = \prod_{q \nmid h} \left( 1 - \frac{1}{q(q-1)} \right) \prod_{q \mid h} \left( 1 - \frac{1}{q-1} \right), \text{ where } q \text{ is prime. Then we have that} \\ \sum_{k=1}^{\infty} \frac{\mu(k)}{n(k)} = \begin{cases} A(h) & \text{if } a_1 \neq 1 \mod 4 \\ \left( 1 - \mu(|a_1|) \prod_{q \mid a_1, q \mid h} \frac{1}{q-2} \prod_{q \mid a_1, q \nmid h} \frac{1}{q^2 - q - 1} \right) A(h) & \text{if } a_1 = 1 \mod 4 \end{cases}$$

In the previous slide, we gave a heuristic for  $\delta(a) = \sum_{k=1}^{\infty} \frac{\mu(k)}{n(k)}$ . Letting  $a_1$  be the square free part of a and h be the largest integer such that a is an h-th power, it turns out we have the following theorem:

#### Theorem

Let 
$$A(h) = \prod_{q \nmid h} \left(1 - \frac{1}{q(q-1)}\right) \prod_{q \mid h} \left(1 - \frac{1}{q-1}\right)$$
, where  $q$  is prime. Then we have that  

$$\sum_{k=1}^{\infty} \frac{\mu(k)}{n(k)} = \begin{cases} A(h) & \text{if } a_1 \neq 1 \mod 4 \\ \left(1 - \mu(|a_1|) \prod_{q \mid a_1, q \mid h} \frac{1}{q-2} \prod_{q \mid a_1, q \nmid h} \frac{1}{q^2 - q - 1} \right) A(h) & \text{if } a_1 = 1 \mod 4 \end{cases}$$

Since  $\sum_{k=1}^{\infty} \frac{1}{k(k-1)}$  converges, A(h) is positive. Therefore, if the heuristic holds, then  $\delta(a)$  is also positive and Artin's Primitive Root Conjecture is true.

# Table of Contents

Primitive Roots mod p

- 2 Artin's Conjecture
- 3 The function  $\delta(a)$



## Hooley's Conditional Proof

Subject to the truth of the Generalized Riemann Hypothesis Cristopher Hooley proved that our heuristic value for  $\delta(a)$  is indeed correct.

## Hooley's Conditional Proof

Subject to the truth of the Generalized Riemann Hypothesis Cristopher Hooley proved that our heuristic value for  $\delta(a)$  is indeed correct.

Intuitively, the Generalized Riemann Hypothesis gives us an effective version of Chebatorev's Density Theorem, which allows us to make the inclusion-exclusion argument rigorous. Except not quite since the error term ends up being two large. Nevertheless, Hooley was able to introduce some intermediate quantities that made everything work.

## Hooley's Conditional Proof

Subject to the truth of the Generalized Riemann Hypothesis Cristopher Hooley proved that our heuristic value for  $\delta(a)$  is indeed correct.

Intuitively, the Generalized Riemann Hypothesis gives us an effective version of Chebatorev's Density Theorem, which allows us to make the inclusion-exclusion argument rigorous. Except not quite since the error term ends up being two large. Nevertheless, Hooley was able to introduce some intermediate quantities that made everything work.

Hooley proved:

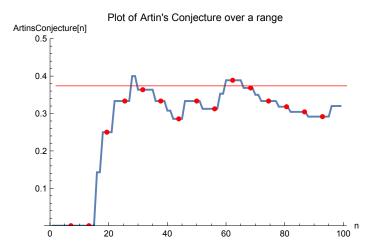
#### Theorem

$$\mathcal{P}_{a}(x) = \left(\sum_{k=1}^{\infty} \frac{\mu(k)}{n(k)}\right) \frac{x}{\log x} + O\left(\frac{x \log \log x}{\log^{2} x}\right)$$

### Thank You! Questions?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

### Artin's Conjecture for a = 10



Credit: Navye Anand

<ロト < 団 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > 国 の へ () 15/15