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Primitive Roots mod p

The notion of a primitive root mod p was introduced by Gauss when he
was investigating the period of the decimal expansion of 1

p for prime
p ̸= 2, 5.

Gauss proved the following lemma:

Lemma

The period of the decimal expansion of 1
p for prime p ̸= 2, 5 is the least

positive number k such that 10k = 1 mod p.

So if we have a prime p, for which the decimal expansion of 1
p has period

p − 1, the maximum possible, then p − 1 must the least positive k for
which 10k = 1 mod p holds. In such a case, we say 10 is a primitive root
mod p.
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Primitive Roots mod p

More generally, we have the following definition of primitive root mod p:

Definition

Given a prime p, an integer a is said to be a primitive root mod p if p − 1
is the least positive integer k such that ak = 1 mod p.

Or in more modern terms:

Definition

An integer a is a primitive root mod p if the subgroup generated by a in
the cyclic group (Z/pZ)× is the whole group.
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Artin’s Conjecture

We can now state qualitative and quantitative forms of Artin’s Primitive
Root Conjecture:

Qualitative Form

Given a non-zero integer a other than −1 or a perfect square, there exist
infinitely many primes p for which a is a primitive root mod p.

Quantitative Form

Given a non-zero integer a other than −1 or a perfect square, if Pa(x)
denotes the number of primes less than equal to x for which a is a
primitive root, then we have that Pa(x) ∼ δ(a) x

log x , where δ(a) is a
specific positive function of a.

In the qualitative form, δ(a) is the density or proportion of primes for
which a is a primitive root since by the Prime Number Theorem
π(x) ∼ x

log x . Of course, the quantitative form implies the qualitative form.
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The function δ(a)

Remark

From this slide onward, we shall be using notions and theorems from
algebraic number theory. If you do not know algebraic number theory, take
these as black-boxes.

Let a be a non-zero integer that is not −1 or a perfect square. Let us now
try to get a conjectural value for δ(a). To do this, we shall require notions
from algebraic number theory. The connection to algebraic number theory
is seen from the following theorem:

Theorem

Given a prime p, a is a primitive root mod p if and only if p does not split
completely in any Kq, where q is prime and Kq = Q(ζq, a

1/q).

Now, Chebotarev’s Density Theorem implies that the density of primes
which split in Kk is 1

n(k) , where n(k) is the degree of the extension Kk/Q.
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The function δ(a)

Using Chebotarev’s Density Theorem and the fact that a prime p splits
completely in Kk and Kl if and only if it splits completely in Klcm(k,l), we
can find a heuristic for δ(a) using the inclusion-exclusion principle:

δ(a) gives us the density of primes which split in none of the Kq, for prime
q. To “compute” this density subtract the density for each prime:

1− 1

n(2)
− 1

n(3)
− 1

n(3)
− · · ·

Then add the densities for product of two primes:

+
1

n(6)
+

1

n(10)
+

1

n(14)
+ · · ·

And so on. In this way, we get that δ(a)“=”
∑∞

k=1
µ(k)
n(k) , where µ is the

Möbius function.
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The function δ(a)

In the previous slide, we gave a heuristic for δ(a) =
∑∞

k=1
µ(k)
n(k) . Letting a1

be the square free part of a and h be the largest integer such that a is an
h-th power, it turns out we have the following theorem:

Theorem

Let A(h) =
∏

q∤h

(
1− 1

q(q−1)

)∏
q|h

(
1− 1

q−1

)
, where q is prime. Then we have that

∑∞
k=1

µ(k)
n(k) =

{
A(h) if a1 ̸= 1 mod 4(
1− µ(|a1|)

∏
q|a1,q|h

1
q−2

∏
q|a1,q∤h

1
q2−q−1

)
A(h) if a1 = 1 mod 4

Since
∑∞

k=1
1

k(k−1) converges, A(h) is positive. Therefore, if the heuristic

holds, then δ(a) is also positive and Artin’s Primitive Root Conjecture is
true.
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Hooley’s Conditional Proof

Subject to the truth of the Generalized Riemann Hypothesis Cristopher
Hooley proved that our heuristic value for δ(a) is indeed correct.

Intuitively, the Generalized Riemann Hypothesis gives us an effective
version of Chebatorev’s Density Theorem, which allows us to make the
inclusion-exclusion argument rigorous. Except not quite since the error
term ends up being two large. Nevertheless, Hooley was able to introduce
some intermediate quantities that made everything work.

Hooley proved:

Theorem

Pa(x) =

( ∞∑
k=1

µ(k)

n(k)

)
x

log x
+ O

(
x log log x

log2 x

)
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Thank You! Questions?
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Artin’s Conjecture for a = 10
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Plot of Artin's Conjecture over a range
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