Fitting polynomials on points in the plane

The aim of this blogpost is to prove that given $n$ points with distinct $x$ coordinates there is a unique polynomial function passing through all of them. Basically this polynomial is the (unique) polynomial of lowest degree that ‘fits’ given data. This theroem is known as the ‘Lagrange interpolation theorem’ in numerical analysis.

From hence forth by a set of $n$-coordinate pairs we refer to a set indexed by $0,1,\cdots,n-1$, such that the $x$-coordinates of all tuples in the set are distinct. It is well know that given a set of $2$-coordinate pairs one can find a unique linear function(a degree one polynomial) passing through them. Lagrange interpolation is an obvious generalization to this.

We first prove the existence part of this theorem. For a particular $k\leq n-1$ consider the set of $n$-coordinate pairs(we call sets with the aftermentioned property ‘special’), such that $(x_{k},1)$ belongs to the set and for all $i\leq n-1$ and $i\neq k$, $(x_{i},0)$ belongs to the set. Now we can construct the polynomial function: $$
f_{k}(x) = \frac{(x-x_0)}{(x_k-x_0)} \cdots \frac{(x-x_{k-1})}{(x_k-x_{k – 1})} \frac{(x-x_{k+1})}{(x_k-x_{k+1})} \cdots \frac{(x-x_{n-1})}{(x_j-x_{n-1})} =\prod_{0\le m\le n-1\ m\neq k} \frac{x-x_m}{x_k-x_m}$$

Clearly this function of degree $n-1$, fits the special $n$-coordinate sets for all $k$. Now given any $n$-coordinate set,$X$, for all $x$-coordinates, $x_{k}$, consider the function $f_{k}$ corresponding to the special set of $n$-coordinate pairs, such that $(x_{k},1)$ belongs to the pair. Through these $f_{k}$’s we can construct a polynomial function: $y_0f_0+y_1f_1\cdots+y_{n-1}f_{n-1}$ where $y_{m}’s$ are the $y$-coordinates of $X$ it’s easy to see that this is a $n-1$ degree polynomial function which fits $X$.

Uniqueness can be proven by algebra.

16 thoughts on “Fitting polynomials on points in the plane

  1. Π­Π»Π΅Π³Π°Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ ΠΈ ΡΡ‚ΠΈΠ»ΡŒ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΄Π΅Ρ‚Π°Π»ΠΈ.
    МСбСль ΠΏΡ€Π΅ΠΌΠΈΡƒΠΌ https://byfurniture.by .

  2. ИдСи для оформлСния дизайнСрской мСбСлью.
    ДизайнСрская мСбСль ΠΏΡ€Π΅ΠΌΠΈΡƒΠΌ-класса https://byfurniture.by .

  3. ΠžΠ±Π·ΠΎΡ€Ρ‹ популярных антистрСсс ΠΈΠ³Ρ€ΡƒΡˆΠ΅ΠΊ.
    АнтистрСс Ρ„ΠΈΠ΄ΠΆΠ΅Ρ‚ ΠΈΠ³Ρ€Π°Ρ‡ΠΊΠΈ https://www.antistres-igrachki.com/ .

  4. ΠšΡƒΠΊΠ»Ρ‹ Π±Π΅Π±Π΅Ρ‚Π° β€” Π»ΡƒΡ‡ΡˆΠΈΠ΅ Π΄Ρ€ΡƒΠ·ΡŒΡ вашСго Ρ€Π΅Π±Π΅Π½ΠΊΠ°.
    МСки ΠΊΡƒΠΊΠ»ΠΈ Π±Π΅Π±Π΅Ρ‚Π° http://www.kukli-bebeta.com/ .

  5. ΠŸΡ€Π΅ΠΈΠΌΡƒΡ‰Π΅ΡΡ‚Π²Π° Π·ΡƒΠ±Π½Ρ‹Ρ… мостов ΠΏΠ΅Ρ€Π΅Π΄ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°ΠΌΠΈ.
    Бколько стоит мостовидный ΠΏΡ€ΠΎΡ‚Π΅Π· koronki-blog.ru/mostovidnoe-protezirovanie .

  6. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ ΡƒΡ…ΠΎΠ΄Π° Π·Π° мостовидными Π½Π΅ΡΡŠΠ΅ΠΌΠ½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΎΡ‚Π΅Π·Π°ΠΌΠΈ.
    ΠœΠΎΡΡ‚ΠΎΠ²ΠΈΠ΄Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΡ‚Π΅Π· Π½Π° Π²Π΅Ρ€Ρ…Π½ΡŽΡŽ Ρ‡Π΅Π»ΡŽΡΡ‚ΡŒ http://belfamilydent.ru/services/mostovidnoe-protezirovanie/ .

  7. Как ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΠΈΠ½Ρ‚Π΅Ρ€ΡŒΠ΅Ρ€ ΡƒΡ‚ΠΎΠ½Ρ‡Π΅Π½Π½Ρ‹ΠΌ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ дизайнСрских элСмСнтов.
    ДизайнСрская мСбСль ΠΏΡ€Π΅ΠΌΠΈΡƒΠΌ-класса http://www.byfurniture.by .

  8. ΠŸΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ элСктрик Π½Π΅Π΄ΠΎΡ€ΠΎΠ³ΠΎ Π² МосквС
    Π’Ρ‹Π·Π²Π°Ρ‚ΡŒ элСктрика Π½Π° Π΄ΠΎΠΌ https://elektrik-master-msk.ru .

  9. Π£ нас Π΅ΡΡ‚ΡŒ всё для идСального ΠΏΡ€Π°Π·Π΄Π½ΠΈΠΊΠ°, ΠΏΠΎ Π²Ρ‹Π³ΠΎΠ΄Π½Ρ‹ΠΌ Ρ†Π΅Π½Π°ΠΌ.
    Π“Π΅Π»ΠΈΠ΅Π²Ρ‹Π΅ ΡˆΠ°Ρ€ΠΈΠΊΠΈ с доставкой НиТний Новгород https://shariki-shop47.ru .

  10. Π—Π°ΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ†Π²Π΅Ρ‚Ρ‹ с доставкой Π² МосквС
    Доставка Ρ†Π²Π΅Ρ‚ΠΎΠ² Π² МосквС – это ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΉ способ ΠΏΠΎΡ€Π°Π΄ΠΎΠ²Π°Ρ‚ΡŒ Π±Π»ΠΈΠ·ΠΊΠΈΡ…. Π’Ρ‹Π±ΠΎΡ€ сСрвисов ΠΏΠΎ доставкС Ρ†Π²Π΅Ρ‚ΠΎΠ² Π² МосквС просто ΠΎΠ³Ρ€ΠΎΠΌΠ΅Π½, Ρ‡Ρ‚ΠΎ позволяСт Π½Π°ΠΉΡ‚ΠΈ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚.
    ΠŸΠ΅Ρ€Π΅Π΄ Ρ‚Π΅ΠΌ ΠΊΠ°ΠΊ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π·Π°ΠΊΠ°Π·, стоит ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒΡΡ с Π±ΡƒΠΊΠ΅Ρ‚ΠΎΠΌ. РСкомСндуСтся Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°ΠΊ стандартныС Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹, Ρ‚Π°ΠΊ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΊΡ€Π΅Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ.
    НС Π·Π°Π±Ρ‹Π²Π°ΠΉΡ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡΡ‚ΡŒ сроки доставки ΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠΏΡ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΡ‚ΡŒ сСрвисы. Π’ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… компаниях Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π΄ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊ своСму Π·Π°ΠΊΠ°Π·Ρƒ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΊΡƒ ΠΈΠ»ΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ нСбольшиС ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Ρ‹.
    Π’Ρ‹Π±ΠΈΡ€Π°ΠΉΡ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅Π½Π½Ρ‹Π΅ сСрвисы с Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΌΠΈ ΠΎΡ‚Π·Ρ‹Π²Π°ΠΌΠΈ ΠΈ Ρ€Π΅ΠΏΡƒΡ‚Π°Ρ†ΠΈΠ΅ΠΉ. Π’Π°ΠΊΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚ нСприятныС ситуации с качСством Ρ†Π²Π΅Ρ‚ΠΎΠ² ΠΈ сроками доставки.

Leave a Reply

Your email address will not be published. Required fields are marked *